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Abstract

Novel self-calibration equations for the 15-term error-
model are presented that form an analogon to the well
known similarity-transforms of the 7-term error-model
([3], [4]). These equations permit construction of a
multitude of self-calibration procedures, one of which,
the Tmrg-procedure, is introduced.

Introduction

Calibration of four-receiver vector network-analyzers
(VNA), according to one of the established error-
models ([1], [2], [4]) requires precisely known
standards. Application of self-calibration procedures
relaxes the requirements, imposed upon the standards,
and allows for partially unknown standards. General
formulas for the construction of self-calibration
procedures exist, so far, only for the 7-term error-
model [4]. As far as the 15-term model [1], [5] that
also accounts for leakage-errors is concerned, all self-
calibration procedures known today rely on one
standard being represented by the zero-matrix [6] (i.e.
using S- parameters, the ideal double match) or use
iterative methods [7].
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Figure 1: A four-receiver VNA with coupled reflecto-
meters (15-term error-model)

A general, closed-form relation between measured
values of the calibration standards and the standards’
S-parameters is not known to date and will be
presented in this paper.

The 15-Term Error-Model

Following the derivation of the error-model in [1], or
[5], the four-port [C] in figure 1 relates the waves at
the DUT to the measured values mi (i=1..4) and can be
partitioned into four 2x2 matrices,
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yielding a compact representation of the error-model

( )[ ][ ] [ ] [ ] [ ][ ] [ ]G Mn E Sn F Mn H+ = +     (1)

with the measurement-matrix [Mn] and the scattering-
matrix [Sn] of the standard given as
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The single and double strokes denote the measured
values in the respective position of the switch.

Calibration of the 15-term error-model requires five
calibration measurements (n = 1..5), resulting in an
overdertermined system of 20 equations in the 15
unknown error-terms. Self-calibration uses this
redundancy to determine up to five unknown
parameters of the calibration-standards before the
error-terms are computed. The needed relation between
the measured values and the standards’ S-parameters,
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eliminating the (yet unknown) error-terms [E] .. [H],
will now be derived.

Subtracting the j-th calibration measurement from the
i-th yields

G M M S FM S H S FM S H

S FM S FM

S F M M S S H FM

i j i i i j j j

j i j i

j i j i j i

( )

( )

( ) ( )( )

− = + − −

+ −

= − + − +

,     (2)

where adding 0= −S FM S FMj i j i  provides an advan-
tageous way of combining terms. In a similar fashion,
measurement j and k (i ≠ j ≠ k) are combined:

G S F S S H FM M Mj j k k j k− = − + − −( )( )( ) 1
    (3)

Equating (2) and (3) results in:

( )( )( )

( )( )( )

S S H FM M M

S S H FM M M

i j i i j

j k k j k

− + −

= − + −

−

−

1

1     (4)

Introducing the notation

∆ ∆S S S M M M m nm n m n m n m n, ,, , , ..= − = − = 1 5

and solving equation (4) for( )H FM i+ yields

( ) ( ), , , ,H FM S S H FM M Mi i j j k k j k i j+ = +− −∆ ∆ ∆ ∆1 1
    (5)

The fourth calibration measurement (denoted with l )
is now used to create a similar equation, such that the
term ( )H FMi+ remains unchanged

( ) ( ), , , ,H FM S S H FM M Mi i l l k k l k i l+ = +− −∆ ∆ ∆ ∆1 1
    (6)

Equating (5) and (6) yields the similarity transform

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

M M M M
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k j k i j i l l k k

, , , ,

, , , ,( ) ( )

− −

− − −= + +

1 1

1 1 1 ,  (7)

which results in the two nonlinear relations
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between the measured values [Mn] and the standards’
S-parameters (Invariance of the eigenvalues of similar
matrices).

As only four calibration measurements are used by
equation (7), the fifth standard [Sm], [Mm] may be
substituted into (7) to yield two more similarity
transformations:
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1 1

1 1 1  (9)

(i-th standard replaced by m-th standard),
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(j-th standard replaced by m-th standard).

Together with (8), the resulting trace- and determinant-
equalities provide six nonlinear self-calibration
equations, sufficient for computation of the maximally
five unknowns that the 15-term error-model allows for.

It is interesting to note that the derivation of (7) holds
as long as the structure of the error model (1) is
unchanged. DUT and/or the measurement matrix [M]
may therefore also be expressed in T- (transmission)
parameters or even in chain-parameters, using voltages
and currents instead of waves. Even the extension to
the error-model of a N-port VNA, as described in [1]
is straight forward. In this case all quadrants of the
error-matrix, the standards’ S- (T-) matrix and the
measurement-matrices are NxN-matrices. The
invariance of the eigenvalues of the two similar
matrices in (7) yields N relations between the
measured values and the standards.

The Tmrg-procedure

The general nature of (8) allows the construction of
self-calibration procedures to optimally match the
needs of a specific application. The following example
addresses coaxial calibration of a 2-port VNA and is
the first closed-form 15-term calibration-procedure
with a completely consistent set of calibration
standards.

Constructing the five standards from a Through and
three reflection one-ports with reflection-coefficients
m, r and g, the first four standards suffice for the
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determination of the unknown reflection-coefficients r
and g:
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Substituting the standards i, j, k, and l into equation
(8), and evaluating the product of S-matrix differences
yields
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resulting in
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Equation (12) can be solved to yield a linear relation
for r
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and can be combined with (11) to form a quadratic
equation for g.
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Choosing the proper root for g requires knowledge
about the sign of that reflection standard. Using a
short for g and an open for r provides the necessary
sign information and makes the standards sufficiently
distinct for subsequent use as fully known calibration
standards.

The only parameters that must be known are the
transmission coefficient t of the T-standard and the
reflection m. The quantity m should be small for
numerical reasons and must be known, but the
standard is not required to be an ideal match.

Since only one set of reflection one-ports is physically
required, the postulated equality of the reflection-
coefficients that enter the different standards is
guaranteed. This is regarded as a major improvement
over self-calibration techniques, that require the same
reflection coefficient to be connected to both ports
simultaneously.

Measurement Results

The Tmrg-procedure was tested in a coaxial
environment with a HP8510C network analyzer as
depicted in figure 2. Artificial leakage is introduced by
the 20dB attenuator, connecting the analyzer’s ports
via T-splitters.

Γ = 0

Γ ≅ 1

Γ ≅ -120dB-
Attenuator

Calibration Standards
       - Through
       - Match
       - Short
        - Open

Figure 2. Measurement setup of the Network Analyzer
with artificial Crosstalk

Even with this high amount of cross-talk, the Tmrg-
procedure performs well, recovering the data of a
measured 25Ω air-line and a 20dB attenuator as
depicted in figure 4 through 6. Figure 3 displays the
basis for the 15-term calibration, namely the self-
calibration result of the open’s and the short’s phase.
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Figure 3. Phase of Open and Short as computed by self-
calibration (eqn. 13 and 14)
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Figure 4. Transmission of the measured 25Ω air-line
(corrected / uncorrected)
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Figure 5. Reflection of the measured 25Ω air-line
(corrected / uncorrected)
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Figure 6. Transmission of the measured 20dB-attenuator
(corrected / uncorrected)

Conclusion

The presented self-calibration equations for the 15-
term error-model fill a gap that existed in comparison
to the 7-term error-model. The data of the five

calibration measurements can be used to determine up
to five unknown parameters of the calibration
standards by exploiting six nonlinear equations
stemming from similarity-transformations. As an
example, geared towards coaxial measurements, the
Tmrg-procedure is presented that, besides the
Through-standard (of known transmission factor)
requires only one known (and two unknown) reflection
one-ports as standards. Inconsistency errors are
avoided by constructing the four reflection-standards
from those three reflection one-ports.
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